A Case Study on the Search Topology of Greedy Best-First Search
نویسندگان
چکیده
Greedy best-first search (GBFS) is a prominent search algorithm for satisficing planning – finding good enough solutions to a planning task in reasonable time. GBFS selects the next node to consider based on the most promising node estimated by a heuristic function. However, this behaviour makes GBFS heavily depend on the quality of the heuristic estimator. Inaccurate heuristics can lead GBFS into regions far away from a goal. Additionally, if the heuristic ranks several nodes the same, GBFS has no information on which node it shall follow. Diverse best-first search (DBFS) is a new algorithm by Imai and Kishimoto [2011] which has a local search component to emphasis exploitation. To enable exploration, DBFS deploys probabilities to select the next node. In two problem domains, we analyse GBFS’ search behaviour and present theoretical results. We evaluate these results empirically and compare DBFS and GBFS on constructed as well as on provided problem instances.
منابع مشابه
Using Greedy Randomize Adaptive Search Procedure for solve the Quadratic Assignment Problem
Greedy randomize adaptive search procedure is one of the repetitive meta-heuristic to solve combinatorial problem. In this procedure, each repetition includes two, construction and local search phase. A high quality feasible primitive answer is made in construction phase and is improved in the second phase with local search. The best answer result of iterations, declare as output. In this stu...
متن کاملFitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure
The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...
متن کاملA hybrid metaheuristic using fuzzy greedy search operator for combinatorial optimization with specific reference to the travelling salesman problem
We describe a hybrid meta-heuristic algorithm for combinatorial optimization problems with a specific reference to the travelling salesman problem (TSP). The method is a combination of a genetic algorithm (GA) and greedy randomized adaptive search procedure (GRASP). A new adaptive fuzzy a greedy search operator is developed for this hybrid method. Computational experiments using a wide range of...
متن کاملAction Pruning Through Under-approximation Refinement
Planning as heuristic search is the prevalent technique to solve planning problems of any kind of domains. Heuristics estimate distances to goal states in order to guide a search through large state spaces. However, this guidance is often moderate, since still a lot of states lie on plateaus of equally prioritized states in the search topology. Additional techniques that ignore or prefer some a...
متن کاملBuilding a Heuristic for Greedy Search
Suboptimal heuristic search algorithms such as greedy bestfirst search allow us to find solutions when constraints of either time, memory, or both prevent the application of optimal algorithms such as A*. Guidelines for building an effective heuristic for A* are well established in the literature, but we show that if those rules are applied for greedy best-first search, performance can actually...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014